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� Introduction
Status Quo

I Current status of the emotion recognition systems in cars is mostly focused on facial-based approaches

I Modeling behavior of the driver in cabin has great impact on developing intelligent and autonomous driving

I According to 7-38-55 rule, 93% of human communication is performed through nonverbal means, which consists of facial
expressions, body language and voice tone.

I Recent studies have shown a high level of correlation between driving behavior and emotional status
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� Introduction
Main objectives of this work:

I How emotions affect the behavior of the driver?

I How to map the driving behavior, to the current emotional status?

I What are the benefits of multimodality in emotion recognition systems?
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# Objectives
Proposed system in this work:

I Facial approach is based on HOG (Histogram of Oriented Gradients) descriptors and SVM

I Acceleration/Deceleration and Steering Wheel usage are considered as the driving behavior-related modalities

I Decission-level fusion is used for combining the modalities (arousal-valence measure)
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# Objectives - Facial Approach

I Facial landmark detector was used to detect ROI,

I After detecting the face, HOG descriptors were used by
applying a fixed size sliding window over an image pyramid
build upon them,

I Model was build on a liner kernel SVM with decision function
of One-Vs.-Rest,

I For training the model k-fold cross validation was used with k
set to 10,

I CK+ and JAFFE databases were used for training,

1: featureVector← init list
2: SVMClassifier← load model
3: while newFrame is exist do
4: frame← FetchVideoStream()
5: grayFrame← GrayscaleImage(frame)
6: if faceTracker(grayFrame).Score < threshold then
7: face← detectFace(grayFrame)
8: else
9: face← faceTracker(grayFrame).Position

10: end if
11: ROIarray ← FetchROI(face)
12: for each ROI in ROIarray do
13: hog ← HOGDescriptor(ROI)
14: featureVector ← featureVector + hog
15: end for
16: result ← SVMClassifier(featureVector)
17: end while
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� Experiments
Testbed:

I A real “SMART” car simulator, 15 participants, each driving 3
scenarios , 36 minutes on average for all of the scenarios,

I Their attitude was different toward scenarios due to the
prehistory condition narrated to them and predefined situations
on the road,

I Participants were asked right after each ride about their
actual emotional status using a questionnaire,

I Facial expressions are recorded through a camera along
with the respective signals of steering wheel and acceleration
through the virtual test drive software of the simulator
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� Results
I Frequency distribution of vehicle acceleration in 4 groups of emotional status
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� Results
I Angry/stressed/confused drivers tend to accelerate/decelerate faster
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� Results
I 50 samples of collected data are considered,

I Decision tree of combining the 3 different module using 50
samples,

I A considerable impact of the vehicle acceleration from
category II,

I All 18 samples of category II are grouped using only one
condition from vehicle acceleration,

I Only samples from category I and IV are left un-grouped,
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� Results
Conditions formulated by steering wheel (SW) rotation and happy, neutral and sadness features from the facial expressions
module, are considered together to form the feature vector,

I After analyzing a single decision tree, we use the same
feature vectors from 50 samples to train a random forest
classifier

Module Vector index Parameter Name Value
VA 1 Acceleration 0 or 1
SW 2 Steering Rotation 0 to∞

Facial Expression

3 Neutral 0 to 1
4 Anger 0 to 1
5 Disgust 0 to 1
6 Fear 0 to 1
7 Happy 0 to 1
8 Sadness 0 to 1
9 Surprise 0 to 1
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� Results
I The 77.27% of accuracy is obtained using multimodal
emotion recognition system on data samples with 2 minutes of
length,

I This condition is prone to errors and false predictions since
in real-life situations the 2-minutes range could be easily
falsified by situations like staying behind a red light,

I To mitigate this issue, we consider the decision taking step at
the end of each ride by summarizing the emotion predictions
performed for only sub-samples and choosing the most
frequently felt emotion

Authors Facial Method Accuracy

J.F.Cohn and T.Kanade et al. Active Appearance Models 83%

H. Alshamsi et al. BRIEF Feature Extractor 89%

W.Swinkels et al. Ensemble of Regression Trees 89.7%

Sébastien Ouellet Convolutional Network 94.4%

R.A.Khan et al. HOG-based 95%

M. F. Donia et al. HOG-based 95%

Our Method HOG on ROI regions 93%

Method Accuracy Precision F1 Score Recall

Facial-based Module 54.54% 54.75% 50.45% 49.86%

SW-based Module 37.5% 10.3% 13.6% 25%

VA-based Module 68.18% 35.51% 37.76% 41.37%

Fusion of All Three Modules 77.27% 73.39% 73.59% 75.89%
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� Results
Comparison of different unimodal and multimodal emotion recognition systems based on accuracy and different number of
emotional classes

System Type Method Classes Accuracy

[1] Unimodal Electrodermal Activity (EDA) 3 70%

[2] Unimodal Facial Emotion Recognition. 6 70.2%

[3] Unimodal Speech Emotion Recognition 3 88.1%

[4] Unimodal Speech Emotion Recognition. 2 80%

[5] Multimodal EDA and Skin Temperature 4 92.42%

[6] Multimodal Speech & Facial Emotion Recognition 7 57%

[7] Multimodal Acoustic & Facial Emotion Recognition 3 90.7%

Our System Multimodal Facial and Vehicle Parameters 4 94.4%
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� Conclusion & Future Work

I Most of the studies on emotion recognition are based on unimodal approaches where only audio or visual is examined,

I Adding behavior related modalities increases the accuracy of the predictions and robustness of the systems,

I We have only investigated the impacts of integrating two modalities of acceleration and steering wheel usage but too many are
left for the future,

I The proposed system was capable of classifying the emotions into 4 main categories with the final accuracy of 94.4%,

I We are going to extend our system by integration of other behavior-related modalities and will study the shared models among
the drivers according to their emotional states

Thank You.
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