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Outline of today’s talk

+ Interpretability / Explainability in DL
+ Image based diagnosis as a high-risk Al application
+ Bye-Tracking for human in the loop DL systems

+ Visual attribute learning for building the thrust



Deep lL.earning / Al revolutionizes Medicine!

0 Diagnostics

* Clinical and multi-omics data:
NIPT, early cancer detection, infectious
disease detection

* EHR data and expert knowledge:
Al-based diagnosis and evaluation of
common diseases

* Image data and deep learning:
Expert-level diagnosis of medical images
and screening of diseases
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Population health management

* Patient-centered information systems for
healthy lifestyle promotion, early disease
detection, public education
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Embryo Genome Voice medical
selection interpretation coach via a smart K*
for IVF  sick newborns speaker (like Alexa)

Mental
health

Applications of

Al in healthcare

Paramedic
dx of heart
attack, stroke

Assist reading
of scans,
slides, lesions

T

[ Therapeutics

* EHR data and clinical guidelines:
Al-based treatment of common diseases

* Human-Al interaction in robotic surgery

* Pharmacogenomics for guiding drug therapy

» Data-driven precision medicine to deliver
therapies guided by clinical and digital
phenotypes

\

P

Administration and regulation

* Big data in hospital management,
insurance, epidemiology, drug interactions
and complications, quality-based outcome
assessments, disease monitoring

Classify
uﬁm cancer, identify
mutations

Credit: “E.Topol”




l.ess Artificial - More Intelligent!

a Predefined engineered features + traditional machine learning
Feature engineering

Il_II..- Selection Classification
Histogram
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Texture Shape
Expert knowledge
b Deep learning
Input Hidden layers Output

Increasingly higher-level features .

Ao 2.

—— Convolution layers for feature map extraction
= Pooling layers for feature aggregation
—— Fully connected layers for classification

Nature reviews cancer 18, 500-510, 2018



Mostly Black-Box Nature of DI.

*lmagine a physician using a DNN to diagnose a
patient.

=S/he will most likely not trust an automated
diagnosis unless s/he understands the reason behind
a certain prediction (e.g. highlighted regions in the
brain that differ from normal subjects) allowing him/
her to verify the diagnosis and reason about it.



World




Data




]

.(\,“\\\\ .M
¥ 'Eﬁ

Black Box
Model

A .%

S

i

Data

World




)
c
©
£
=

I

=
2
e
&

Black Box
Model

Data

ﬁ capture

World




Humans .
ﬁ inform

Interpretability
Methods

ﬁ extract

Black Box
Model

ﬁ learn

Data




Why should I trust Al?

Original image Adversarial noise Adversarial example

+0.04 X

Dermatoscopic image of a benign Perturbation computed Combined image of nevus and
melanocytic nevus, along with the by a common adversarial attack perturbation and the
diagnostic probability computed attack technique. diagnostic probabilities from
by a deep neural network. See (/) for details. the same deep neural network.
| Benign | Benign

| Malignant I | \alignant

1 I 1 1 1 1 I I I I 1 1

Model confidence Model confidence

Adversarial
rotation (8)

Diagnosis: Benign Diagnosis: Malignant

22 March 2019, Science



Al fails badly too!

+ Uber self-driving car kills a pedestrian
+ Amazon Al recruiting tool is gender biased

+ Google Allo suggested man in turban emoji as response to a gun
emoji

+ Google Translate shows gender bias in Turkish-English translations
(doctors, hard-working —> he, nurses, lazy —-> she)

+ Facebook chatbots shut down after developing their own language
+ Al misses the mark with Kentucky Derby predictions

+ Google Home Minis spied on their owners



Machine Learning System

Q Cat
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This is a cat:
¢ It has fur, whiskers, and claws.
¢ It has this feature:

This is a cat. M li .I

Current Explanation XAl Explanation

Source: https://www.darpa.mil/program/explainable-artificial-intelligence




Current XAl Approaches

+ One qualitative approach is to highlight areas that
provide evidence in favor of, and against choosing a
certain class.

¢ Filtering/ Visualization

o Perturbation based methods (saliency maps,
CAM, etc)



Current XAl Approaches

Forward Pass Saliency Map Deconvolution Guided Backprop
(Baehrans et al, Simonyan et al) (Zeiler et al) (Springenberg et al)
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Input Image @ Forward ReLU Activated @ Backward ReLU Activated @ Threshold Unit Activated @ Linear Neuron

Forward ReLU Deactivated Backward ReLU Deactivated Threshold Unit Deactivated

+ The pixels which contribute maximally to the
prediction, once altered, would drop the probability by
the maximum amount.



Current XAl Approaches

Qure.Al: Heatmap by GuidedBackprop against original annotation.



Drawbacks of Current XAl Algorithms

Qure.Al: Heatmap by GuidedBackprop against original annotation.

Not completely “true” explanation/reasoning
Artifact generation in visual maps
Limitation to specific architectures



What we propose

+ Building-in-thrust (human in the loop)
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What we propose

+ Building-in-thrust (human in the loop)

+ Explainable / interpretable DL system

Interpretable to Whom? A Role-based Model for Analyzing Interpretable
Machine Learning Systems

Richard Tomsett! Dave Braines!?> Dan Harborne? Alun Preece? Supriyo Chakraborty >

Defn. Interpretability is a domain-specific notion, so there cannot be all
purpose definition.



Radiologist Centered Al Protocols

* Human + Al > Al
— (human in the loop ML)

* get a computer system
to learn some
intelligence behavior by
training it on large
amount of data.




Radiologist Centered Al Protocols

* Human + Al > Al
— (human in the loop ML)

* get a computer system
to learn some
intelligence behavior by
training it on large
amount of data.

Example High Risk Al Application:

Detection and Malignancy characterization of lung nodule in CT images



RCALI (radiologist centered Al)

: VCA
CAD-detection
(pre-trained) \
desktop based collaborative detection
- : eye-tracking system (C-CAD) :
_ v ¥ interaction seamless —» buildyvisual l Ny 0T
Radiologist — integration attention models VCA
reads CT scans real radiology room Interpretable/collaborative =~ ©UPUt
: diagnosis

itk CAD-diagnosis /

(pre-trained)

+ Dedicated light source
<+ darkened environment
<+ limited distraction




Detection via Real-Time Eye-Tracking




Visual Search (Eye-Tracking) + Al Integration

Soln: Combine complementary strengths of radiologists and Al

Single-Screen

In real radiology rooms, in realistic settings!



Eye-Tracker / Device Info.

Fovio™ Eye Tracker remote system.
System Type: Remote (contact-free)

Sampling Rate: 60Hz Accuracy: 0.78 Degrees (Mean) 0.59

_ _ (Std. Dev.) angular error
Method: Proprietary Algorithm

_ . Head Box: 31cm x 40cm @ 65cm -
Binocular Tracking: Yes range 40-80cm
Additional Details: Large head box,
robust to glasses and ambient light,
multi-display tracking






Human-Al Collaboration (Real Time) - Ex: Lung Cancer Screening

Nodes o
Edges

Less important edges
Important edges
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. Multi-Task CNN — Step 4
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khosravan, et al. MedlA 2018
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Reduce Gaze Points for Faster Analys

Graph Sparsification

Clustered data

Raw data



Radiologist #1
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Radiologist #1 Radiologist #2

2
v
=
1]
L o=
©
D
£
—




Radiologist #1 Radiologist #2 Radiologist #3
-‘ ) i : .

84
v
=
©
-
C
D
E
—




Raw data

Clustered

data

Graph build on
cluster centers

data

Sparsified

data

Radiologist #1

Radiologist #2

Radiologist #3

0.25

Average

0.870

0.919




Diagnosis via Visual Explanations



Visual Explanations via Attributes

low ) SCORES high

Every lung nodule is
associated with 6 attributes
provided by the radiologist:

—Calcification
—Sphericity
—Margin
—Lobulation
—Spiculation
—Texture

Interpretable to Whom? A Role-based Model for Analyzing Interpretable
Machine Learning Systems

Richard Tomsett! Dave Braines'? Dan Harborne? Alun Preece’ Supriyo Chakraborty >



Visual Explanations via Attﬂbutes

SCORES >

Every lung nodule is Subtley pE, ¢ ﬂnl In
associated with 6 attributes
provided by the radiologist: sphericity .Dn
—Calcification Margin S
—Sphericity
wmlbl
—Lobulation
—Spiculation Spiculation E ,
—Texture 4*

Texture Pﬂn

*We explore the significance of these attributes to determine malignancy

*We concatenated these attribute score with 4096 dimension feature vector of
CNN and perform Gaussian Progress regression

*LIDC-IDRI data base was used (1018 CT scans), multiple radiologists
annotated the data sets.




Mult-Task Learning of Visual Attributes

Hussein, et al, ISBI 2017

Attributes:

* Malignant? - Y
* Calcified? - N
* Lobulated? - Y
* Spherical? =Y
* Spiculated? - Y

* Margin? =Y

\* Texture? =Y )
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Hussein et al, IPMI, 2017
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Mean Score Diff

GIST+LASSO

76.83%

0.6753

3D CNN MTL + Trace

80.08%

0.6259

Proposed approach

91.26%

0.4593




Drawbacks

+ The requirement of large scale well annotated data
+ Lack of object-part relationship with typical CNNs

+ Fragile nature of the CNN systems (easily fooled!)



CapsNet (Capsule Networks)

Sabour, et al. NeurIPS 17
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ReLUConvi # 256 | DigitCaps
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Two Simple Changes from CNNSs:

Features are now represented as vectors rather than scalars.

Vectors store orientation information about the input.

Adreement between feature “predictions’ Is computed to
weight the presence and orientation of higher-level features.



CapsNet (Capsule Networks)

Sabour, et al. NeurIPS 17
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without regard to importance/
heterogeneity of the region.

ReLU Convi # 256 E | Digil;:aps ’
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..... g 1,
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——W,; = [8 X 16]
DRAWBACKS OF POOLING
A form of routing, just an unintelligent one.
Pro: Some spatial-invariance. 1 0 2 3 MaxPooling
Pro: Reduces memory burden. 6 8 6 8
Con: Throws away information T 0 —>
2 4

Capsules use strided-overlapping
convolutions and dynamic routing.



CapsNet (Capsule Networks)

Sabour, et al. NeurIPS 17
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Requires less training data for good generalization.
Preserves part-whole relationships and shape information.

Capsule vectors encode information about input.

Part Capsule Autoencoder

(a)
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parts iﬁ explain Ly k
& poses| L=: poses
ey 451 :T---.>
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| reassemble '
part
likelihood

{ image

11ke11hood ‘

Object Capsule Autoencoder

%

templates (learned)

Figure 1: Stacked Capsule Au-
toencoder (SCAE): (a) part cap-
sules segment the input into parts
and their poses. The poses are
then used to reconstruct the input
by affine-transforming learned
templates. (b) object capsules try
to arrange inferred poses into ob-
jects, thereby discovering under-
lying structure. SCAE is trained
by maximizing image and part
log-likelihoods subject to sparsity
constraints.



X-Caps

X-Caps: Explainable Capsule Networks
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DX-Caps

DX-Caps: Deep Explainable Capsule Networks
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Predictive Performance

® SotA CNNs Explainable

\\ ‘Capsules (X-Caps)—
N .
\ s Explainable

N "CNNs (HSCNN)
O N
CapsNet N\

Explainable Predictions



Table 2: Prediction accuracy of visual attribute learning with capsule networks. Dashes (-) represent values which the given
method could not produce. X-Caps significantly outperforms the state-of-the-art explainable method (HSCNN) at attribute
modeling (the main goal of both studies), while also producing higher malignancy prediction scores, approaching state-of-
the-art non-explainable methods performance.

Attribute Prediction Accuracy % Malignancy

subtlety sphericity margin  lobulation  spiculation texture | Accuracy %
Non-Explainable Methods
3D Mulu-Scale + RF | 1] - - - - . - 86.84
3D Multi-Crop [ 7] - - - - - - 87.14
3D Multi-Out-DenseNet [ ] - - - - - - 90.40
3D Dual-Path GBM [ 7] - - - - - - 90.44
CapsNet [ 2+) - - - - - - 77.04
Explainable Methods
3D Dual-Path-Dense HSCNN [ 0] 719 55.2 72.5 - - 83.4 34.20
Proposed X-Caps 90.39 85.44 84.14 70.69 75.23 93.10 86.39




Concluding Remarks

1 STRENGTHEN TRUST AND
TRANSPARENCE

Without understanding the
contribution of each explanatory
variable to the outcome, we will
have no guarantee that the model
will make a relevant and fair
recommendation.




Concluding Remarks

2 EXPLAIN DECISIONS

An interpretable Machine
Learning model allows humans
to understand the proposed
outcome and establish the
diagnosis.




Concluding Remarks

3 IMPROVE THE MODELS

Interpretability ensures data
scientists that the model is good
for the right reasons and wrong
for the right reasons as well.
Interpretability offers new
possibilities for feature
engineering and model
debugging.
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perceptual error etc., time consuming, and sub-optimal
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Concluding Remarks

Visual search is gold standard; however, prone to errors, malpractice/
perceptual error etc., time consuming, and sub-optimal

Computer (Al) helps radiologists to find pathologies that can be missed
however, computer also depicts so many false positives that radiologists
easily capture them with true labels!

We can design new Al tools that are more intelligent and less artificial by
collaborating with humans (experts)!

Explainability plays an important role in building thrust and robust
systems; hence, increasing the chance of deploying such system in real clinic



Thank you!




