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In tool condition monitoring, vision sensors enable SIEMENS
enhanced insight into the state of the cutting tool. lngenuity for Life

r||||-|-

a) Flank wear

 Indirect observation: b) Groove
* Vibration [1, 2] c) Build-up-edge
+ Acoustics [3, 4] [10]
* Power [4]

« Current [1, 5]
« Torque [6]
- Direct observation
+ Laser scanner [7]
+ Vision [8-13]
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Deep Learning appears to be a promising
method for solving the defined goals.

Goals

+ Assistance system for machine operator

- Automated detection of different wear
regions

« Calculation of relevant metrics such as flank
wear width or area of groove

- Robustness against different illumination
situations

+ Adaptability for different types of cutting tool
inserts
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Semantic Image 'l(f?(g’

Segmentation using
Deep Learning |

Examples from other fields:

» Robot-assisted surgery [14]

» Tumor detection in ultrasound data [15]
» Analysis of RMI scans [16]

 Detection of human cells [17]
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In the presented solution, a sliding window approach using SIEMENS
CNNs is used to provide wear information to the worker. lngenuity for ife
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For every raw image a mask is created indicating whether a SIEMENS
pixel depicts background, the tool or a type of wear defect. lngenuity for Life

. Undamaged insert body Flank wear . Groove . BUE

. Background

Unrestricted © Siemens AG 2019
Page 5 2019-12-19 Benjamin Lutz / Siemens — Corporate Technology



Some of the classes seem to be easy separable SIEMENS
whereas others look similar to the human eye. lngenuity for Life

Unrestricted © S AG 2019
Page 6 2019-12-19 Benjamin Lutz / Siemens — Corporate Technology




After hyperparameter optimization, the model SIEMENS
reaches a prediction accuracy of 91.5 %. lngenuity for ife
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morphological

Architecture: operations
- 5 CNN layers

- 16, 32, 64, 128, 256 kernels respectively

Background 39.2% - 32 neurons in fully connected hidden layer
Undamaged 54.0 % - RelLu activation functions

insert body - Training:

Flank wear 5.5 % - Adam optimizer [18]

Groove 0.8 % + 200 epochs & 0.001 learning rate

Build-up-edge 0.5 % Prediction accuracy: 91.5 %
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The proposed solution enables additional process insight, SIEMENS

automated wear metric calculation and improved accuracy. lngenuity for ife
Resulting worker information system: Flank wear width calculation:
W " Comparison of proposed solution to manual
ear analysis: .
Flank wear: Detected; width: 360 pm assessment:
a) Groove: Not detected « Average error manual procedure: 30.6 um
Build-up-Edge: Detected; size: 0.25 mm? * Average error proposed procedure: 17.1 pym
Segmentation result: « For most samples, the proposed solution

outperforms the manual assessment
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The study showed, that deep learning is a promising tool for SIEMENS

Image segmentation in tool condition monitoring. lngenuity for Life
Summary Future research
Deep Learning through CNN can be used for Increase of dataset for accuracy improvement
automated semantic segmentation of images for Investigation of transfer learning strategies for
cutting tools incorporating new type of cutting tool inserts

It is possible to detect and differentiate defects
such as flank wear, grooves and build-up-edges

The developed algorithm outperforms the manual
approach in comfort and accuracy

W/
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