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Relevant types of tool wear

In tool condition monitoring, vision sensors enable 

enhanced insight into the state of the cutting tool.

• Indirect observation:

• Vibration [1, 2]

• Acoustics [3, 4]

• Power [4]

• Current [1, 5]

• Torque [6]

• Direct observation

• Laser scanner [7]

• Vision [8-13]
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Approaches for tool 

condition monitoring
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Semantic Image 

Segmentation using 

Deep Learning

Deep Learning appears to be a promising 

method for solving the defined goals.

Goals

• Assistance system for machine operator

• Automated detection of different wear 

regions

• Calculation of relevant metrics such as flank 

wear width or area of groove

• Robustness against different illumination 

situations

• Adaptability for different types of cutting tool 

inserts
Examples from other fields:

• Robot-assisted surgery [14]

• Tumor detection in ultrasound data [15]

• Analysis of RMI scans [16]

• Detection of human cells [17]
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In the presented solution, a sliding window approach using 

CNNs is used to provide wear information to the worker.
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Masked images

For every raw image a mask is created indicating whether a 

pixel depicts background, the tool or a type of wear defect.

Raw image data

1 mm

1 mm

1 mm

1 mm

Background Undamaged insert body Flank wear Groove BUE
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Background
Undamaged 

insert body
Groove Flank wear Build-up-edge

Some of the classes seem to be easy separable 

whereas others look similar to the human eye.
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• Architecture:

• 5 CNN layers

• 16, 32, 64, 128, 256 kernels respectively

• 32 neurons in fully connected hidden layer

• ReLu activation functions

• Training:

• Adam optimizer [18]

• 200 epochs & 0.001 learning rate

Machine Learning Model

After hyperparameter optimization, the model 

reaches a prediction accuracy of 91.5 %.
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Pre-Processing

• Slicing into windows 

of size 48x48 pixels

• For training: 

Balancing of data due 

to uneven distribution

Class Share

Background 39.2 %

Undamaged 

insert body

54.0 %

Flank wear 5.5 %

Groove 0.8 %

Build-up-edge 0.5 %

Post-Processing

• Rearrangement of 

predicted classes to 

shape of raw data

• Noise removal using 

morphological 

operations

Prediction accuracy: 91.5 %
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Segmentation result: 

 

Detected; width: 360 µm

Not detected

Detected; size: 0.25 mm²

Wear analysis:

Flank wear: 

Groove: 

Build-up-Edge:

b)

a)

Flank wear Groove Build-up-edge

1 mm

The proposed solution enables additional process insight, 

automated wear metric calculation and improved accuracy.

Flank wear width calculation:

Comparison of proposed solution to manual 

assessment:

• Average error manual procedure: 30.6 µm

• Average error proposed procedure: 17.1 µm

• For most samples, the proposed solution 

outperforms the manual assessment

Resulting worker information system:
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Future research

• Increase of dataset for accuracy improvement

• Investigation of transfer learning strategies for 

incorporating new type of cutting tool inserts

The study showed, that deep learning is a promising tool for 

image segmentation in tool condition monitoring.

Summary

• Deep Learning through CNN can be used for 

automated semantic segmentation of images for 

cutting tools

• It is possible to detect and differentiate defects 

such as flank wear,  grooves and build-up-edges

• The developed algorithm outperforms the manual 

approach in comfort and accuracy
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