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SuHaEea RessNassstilavibnessiiaation Load call &3
methMESneasurementthrough load cell[1,2,3,4, 4. T 1w=rT"
» Mass measurement through load cell : S
> Mol udieFnedsuPantht through roller ,.jmo’ PEE Foed rolle
> \fidplacermatdZirement through roller RS

> displaeardrotebht via optical sensor [8, 9]

» Volumxeemeasuiie menbtyéd opticdd sensor
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. (R)equir-es calib-ration and highly affected by changes in
. IRl Y mbient light (night time and
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 Requires calibration and highly affected by

> Massrmeasurement through images from
stereo camera
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Problem Complexity

* Factors
— Angle of capture
— Mass flow rate
— Frame overlap
— Variable elevator spe
— Different run sizes
— Different lighting co
— Sparse ground truth
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Deep Learning Basics

What to consider when deciding on
using arPNMN? e

0 AlexNet, VGG, GoogleNet,
ResNet, Your own?

" Activation function Big learning rate Small learning rate
0 Sigmoid, Tanh, RelLU, ELU

" Choice of hyper- ‘
parameters:
O Learning rate
" Loss function '
0 C(Classification: Softmax
0 Regression: MSE

lowa State University



Problem Complexity

Introduction " em Complexi
Volumetric Appr h gorithm derivation
ormecric Approac DNN architecture

ViSiOn_ Approach Results
Questions?

Loss Function

1 ni y
Li(z,y;w) = ;{% — Z(f(%;W) X vij X ) }
( =1
1 A
Li(z,y;w) = n—{yz Zyz;}
1 jzl

hat we handled frame overlap, we need to figure out
to obtain correct predictions per frame
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Gradient Update

* Our loss function
 Gradient update occurs at every end of a run

 We keep a running sum of gradients and
predictions

e Compute the derivative of the loss function to

olgfess 5 n gy
1 o A” ZJ
ow < n [% Zy”] 8 Z ow

t j=1 j=1
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DNN Architecture Summary

" DNN Architecture

It tingegesi2e x 961 X(aHAdkigidh vrdinal size)
* Paramietersikkand Sizefofapamaisreteds: OBL7
M@ning time: ~11 hours

TeeiABRY ¥Hes "Rodrs”

* Testing average error: 4.5%:.

»  1x1,128

aeS 9 E R Out_size = IN \
Input-Image CONV_1_1 CONV_1_2 CONV_1_3
e SEREY  i1x1,32 o 3x3,32 W 1x1,128

Max-pool/2

RGE OUT _size=IN

OUT _size=IN OUT _size=IN/2

ELU

CONV_2 3 CONV_2 2 CONV_2 1
4—ELU 1x1,128 <-ELU 3x3,32 ELU 1x1,32
OUT size=IN OUT size= IN/2 OUT size=IN

Identity

Avg-pool

Fully connected
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What is Going on Behind the Scenes?

* Proper visualization techniques can
support the investigation of DNN
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Robustness
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Histogram Distribution of Error and

Error Histogram Distribution

B DNN-Based Error: p=0.021, 0=0.086
™ Volume-Based Error: u=0.052, 6=0.112
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Volumetric-Based Approach to Mass

~ linstanvslohknemeaasiere mantidble

. ¢8Rl ith (true mass) is only available by run
 Ground truth (true mass) is only

available by run
[ %ENSGC Sﬂt—’*"—sec ® X DENSITY ]

Mass = f(max(V — B,0);0) x max(V — ,0) X Veje, X t

Where "f" is a 2-layer neural network parameterized by “6” that outputs a
prediction of density based on the volume (V), scaled by elevator speed (V,;.,,)
and capture time (f), with tanh activation
Where "f” is a 2-layer neural network parameterized by “” that outputs
a prediction of density based on the volume (V), scaled by elevator

ﬁ%%a%%%ﬁégi%%ﬁmmaﬁmmﬁmg Ipw ligh runs: 12.58%
Regireg teaurpalJip ebive re wEbirowudr kovithigdt low ligh runs: 8. 65%
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Laboratory data summary
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on S es al tion nt
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Temporal Smoothness

* Images near in time should have more similarity
In mass than images further away in time

* Hyper-parameter A (chosen empirically 0.05)
* This term is added to the loss function

T,

Li(e,ysw) = o = 3 (Faigsw) x vy x )} +
A 2
i Z {f(ﬂi?z'j; w) = f(Zij—1); w)}
(2 3:1
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