Coarse Annotation Refinement for Segmentation of Dot-Matrix Batchcodes

Ning Jia, Christopher J. Holder, Stephen Bonner, Boguslaw Obara

Presented by Phillip Adey
Agenda

- Objectives
- Related Works
- Proposed Method
- Experiments
- Conclusion
Objectives

- Batchcode segmentation - retrieve black dot matrix from images

Challenges:

- High variation of size, shape and orientation
- Object features are tiny discrete dots - easily removed by morphological opening-closing
- Noise around the batchcode shares similar low level features
- Other text-like (noisy) features on the background
- Accurate annotation is very expensive
Objectives

● Batchcode segmentation - retrieve black dot matrix from images (accurately)

● Challenges:
 ○ High variation of size, shape and orientation
 ○ Object features are tiny discrete dots - easily removed by morphological opening-closing
 ○ Noise around the batchcode shares similar low level features
 ○ Other text-like (noisy) features on the background
 ○ Accurate annotation is very expensive
Related Works

- **Applications:**
 - Scene Text Detection
 - Barcode Detection

- **Methods:**
 - Maximally Stable Extremal Regions (MSER): returns all the subregions with consistent pixel intensity
 - Deep Object Detection Models: anchor-based region proposal networks for multi-class object localisation
 - Semantic Segmentation Networks
Related Works

- Applications:
 - Scene Text Detection
 - Barcode Detection

- Methods:
 - Maximally Stable Extremal Regions (MSER): returns all the subregions with consistent pixel intensity
 - Deep Object Detection Models: anchor-based region proposal networks for multi-class object localisation
 - Semantic Segmentation Networks
Related Works

Applications:
- Scene Text Detection
- Barcode Detection

Methods:
- Maximally Stable Extremal Regions (MSER): returns all the subregions with consistent pixel intensity
- Deep Object Detection Models: anchor-based region proposal networks for multi-class object localisation
- Semantic Segmentation Networks
Proposed Method

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.

Algorithm 1 MSGR

1: procedure COLOUR SPACE TRANSFORM
2: \[I_{HED}(x, y, c) \leftarrow f_{HED}(I(x, y, c)) \]
3: \[t \leftarrow f_{Otsu}(I_{HED}(x, y, 1)) \]
4: procedure MAXIMISE GLOBAL STABILITY
5: \[a_0 \leftarrow \infty \]
6: for \(\lambda \in \{1, 1 - \delta, 1 - 2\delta, \ldots, 0.5\} \) do
7: \[I_B(x, y) \leftarrow I_{HED}(x, y, 1) > \lambda t \]
8: \[a \leftarrow f_{dim}(I_B(x, y)) \]
9: if \(a - a_0 < 2 \) then
10: break
11: else
12: \[a_0 \leftarrow a \]
13: return \(I_B(x, y) \)
Proposed Method

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.
Proposed Method

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.
Proposed Method

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.
Proposed Method

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.
Deep Segmentation Model

- Trained with MSGR refined labels
- Output binary mask that highlight the batchcode region, tightly fit to the batchcode regions
- The results can be further optimised by MSGR
Experiments

- Deep models trained with refined labels outperforms those trained with coarse labels.
- MSGR can further improve the prediction accuracy.

<table>
<thead>
<tr>
<th>Model</th>
<th>$p(%)$</th>
<th>$r(%)$</th>
<th>$j(%)$</th>
<th>fps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result 1 (Trained with Coarse Labels)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCN</td>
<td>41.26</td>
<td>98.50</td>
<td>40.71</td>
<td>≈12</td>
</tr>
<tr>
<td>DeepLabV3</td>
<td>38.96</td>
<td>99.87</td>
<td>38.88</td>
<td>≈9</td>
</tr>
<tr>
<td>U-Net</td>
<td>38.77</td>
<td>99.44</td>
<td>38.23</td>
<td>≈23</td>
</tr>
<tr>
<td>PSPNet</td>
<td>66.69</td>
<td>61.33</td>
<td>42.51</td>
<td>≈10</td>
</tr>
<tr>
<td>Result 2 (Coarse Labels + MSGR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCN</td>
<td>86.90</td>
<td>93.91</td>
<td>84.16</td>
<td>≈3.5</td>
</tr>
<tr>
<td>DeepLabV3</td>
<td>83.87</td>
<td>97.43</td>
<td>82.11</td>
<td>≈3</td>
</tr>
<tr>
<td>U-Net</td>
<td>75.48</td>
<td>95.93</td>
<td>73.56</td>
<td>≈4.5</td>
</tr>
<tr>
<td>PSPNet</td>
<td>81.36</td>
<td>58.56</td>
<td>56.24</td>
<td>≈3</td>
</tr>
<tr>
<td>Result 3 (Trained with Refined Labels)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCN</td>
<td>93.29</td>
<td>97.08</td>
<td>90.53</td>
<td>≈12</td>
</tr>
<tr>
<td>DeepLabV3</td>
<td>92.22</td>
<td>98.49</td>
<td>91.04</td>
<td>≈9</td>
</tr>
<tr>
<td>U-Net</td>
<td>92.54</td>
<td>94.86</td>
<td>88.25</td>
<td>≈23</td>
</tr>
<tr>
<td>PSPNet</td>
<td>91.06</td>
<td>77.84</td>
<td>72.94</td>
<td>≈10</td>
</tr>
<tr>
<td>Result 4 (Refined Labels + MSGR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCN</td>
<td>95.41</td>
<td>95.63</td>
<td>91.75</td>
<td>≈3.5</td>
</tr>
<tr>
<td>DeepLabV3</td>
<td>93.83</td>
<td>95.56</td>
<td>91.63</td>
<td>≈3</td>
</tr>
<tr>
<td>U-Net</td>
<td>93.73</td>
<td>94.43</td>
<td>90.51</td>
<td>≈4.5</td>
</tr>
<tr>
<td>PSPNet</td>
<td>92.79</td>
<td>82.39</td>
<td>78.50</td>
<td>≈3</td>
</tr>
</tbody>
</table>

Questions and Suggestions:

https://community.dur.ac.uk/boguslaw.obara/
ning.jia@durham.ac.uk
boguslaw.obara@durham.ac.uk