Coarse Annotation Refinement for Segmentation of Dot-Matrix Batchcodes

Ning Jia, Christopher J. Holder, Stephen Bonner, Boguslaw Obara

Presented by Phillip Adey

Agenda

- Objectives
- Related Works
- Proposed Method
- Experiments
- Conclusion

Objectives

- Batchcode segmentation retrieve black dot matrix from images
- Challenges:
 - High variation of size, shape and orientation
 - Object features are tiny discrete dots easily removed by morphological opening-closing
 - Noise around the batchcode shares similar low level features
 - Other text-like (noisy) features on the background
 - Accurate annotation is very expensive

Objectives

 Batchcode segmentation - retrieve black dot matrix from images (accurately)

• Challenges:

- High variation of size, shape and orientation
- Object features are tiny discrete dots easily removed by morphological opening-closing
- Noise around the batchcode shares similar low level features
- Other text-like (noisy) features on the background
- Accurate appetation is very expensive

Related Works

• Applications:

- Scene Text Detection
- O Barcode Detection

• Methods:

- Maximally Stable Extremal Regions (MSER): returns all the subregions with consistent pixel intensity
- Deep Object Detection Models: anchorbased region proposal networks for multi-class object localisation
- \bigcirc $\;$ Semantic Segmentation Networks

Related Works

• Applications:

- Scene Text Detection
- O Barcode Detection

• Methods:

- Maximally Stable Extremal Regions (MSER): returns all the subregions with consistent pixel intensity
- Deep Object Detection Models: anchorbased region proposal networks for multi-class object localisation
- O Semantic Segmentation Networks

Related Works

• Applications:

- Scene Text Detection
- O Barcode Detection

• Methods:

- Maximally Stable Extremal Regions (MSER): returns all the subregions with consistent pixel intensity
- Deep Object Detection Models: anchorbased region proposal networks for multi-class object localisation
- O Semantic Segmentation Networks

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.

Algorithm 1 MSGR

- 1: procedure COLOUR SPACE TRANSFORM $I_{HED}(x, y, c) \leftarrow f_{HED}(I(x, y, c))$ 2: $t \leftarrow f_{Otsu}(I_{HED}(x, y, 1))$ 3: 4: procedure MAXIMISE GLOBAL STABILITY 5: $a_0 \leftarrow \infty$ for $\lambda \in \{1, 1 - \delta, 1 - 2\delta, ..., 0.5\}$ do 6: $I_B(x,y) \leftarrow I_{HED}(x,y,1) > \lambda t$ 7: $a \leftarrow f_{dim}(I_B(x, y))$ 8: if $a - a_0 < 2$ then 9: break 10: else 11: 12: $a_0 \leftarrow a$
 - : return $\begin{array}{c} a_0 \leftarrow a \\ I_B(x,y) \end{array}$

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.

- Colour Space Transform: remove background noise by colour (contrast).
- Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.

 Colour Space Transform: remove background noise by colour (contrast).

 Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.

cropped image

 Colour Space Transform: remove background noise by colour (contrast).

Maximise Global Stability: Gradually reduce threshold until the region area is stabilised.

Deep Segmentation Model with MSGR refined labels

- Output binary mask that highlight the batchcode region, tightly fit to the batchcode regions
- The results can be further optimised by MSGR

Experiments

- Deep models trained with refined labels outperforms those trained with coarse labels
- MSGR can further improve the prediction accuracy

Model	p(%)	r(%)	j(%)	fps
Result1 (Trained with Coarse Labels)				
FCN DeepLabV3 U-Net PSPNet	41.26 38.96 38.77 66.69	98.50 99.87 99.44 61.33	40.71 38.88 38.23 42.51	$\approx 12 \\ \approx 9 \\ \approx 23 \\ \approx 10$
Result2 (Coarse Labels + MSGR)				
FCN DeepLabV3 U-Net PSPNet	86.90 83.87 75.48 81.36	93.91 97.43 95.93 58.56	84.16 82.11 73.56 56.24	≈ 3.5 ≈ 3 ≈ 4.5 ≈ 3
Result3 (Trained with Refined Labels)				
FCN DeepLabV3 U-Net PSPNet	93.29 92.22 92.54 91.06	97.08 98.49 94.86 77.84	90.53 91.04 88.25 72.94	$pprox 12 \ pprox 9 \ pprox 23 \ pprox 10 \ \hprox 10 \ \hpro$
Result4 (Refined Labels + MSGR)				
FCN DeepLabV3 U-Net PSPNet	95.41 93.83 93.73 92.79	95.63 95.56 94.43 82.39	91.75 91.63 90.51 78.50	$\begin{array}{c} \approx 3.5 \\ \approx 3 \\ \approx 4.5 \\ \approx 3 \end{array}$

Questions and Suggestions:

<u> https://community.dur.ac.uk/boguslaw.obara/</u>

<u>ning.jia@durham.ac.uk</u>

boguslaw.obara@durham.ac.uk

